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Vitamin K is an essential nutrient and a cofactor for the carboxylation of specific glutamyl residues of pro-
teins to c-glutamyl residues, which activates osteocalcin related to bone formation. Among vitamin K
homologues, menaquinone-4 (MK-4) is the most active biologically, up-regulating the gene expression
of bone markers, and thus has been clinically used in the treatment of osteoporosis in Japan. Recently,
we confirmed that MK-4 was converted from dietary phylloquinone (PK), and then accumulated in var-
ious tissues at high concentrations. This system should play an important role in biological functions
including bone formation, however, the pathway by which MK-4 is converted remains unclear. In this
study, we studied the mechanism of MK-4’s conversion with chemical techniques using deuterated
analogues.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. Structure of vitamin K homologues: phylloquinone (A) and menaqui-
nones (B).
Vitamin K is a well-known cofactor for the vitamin K-dependent
c-carboxylative reaction that converts specific glutamic acid resi-
dues to c-carboxyglutamic acid residues in certain proteins related
to blood coagulation and bone formation.1 Vitamin K has two ma-
jor homologues, the plant-derived vitamin K1 (A) (phylloquinone:
PK) and the bacterium-derived vitamin K2 (B) (menaquinone-n:
MK-n) (Fig. 1).2 It has been revealed that menaquinone-4 (MK-4),
one of the menaquinone homologues, has additional biological ac-
tions related to gene transcription through steroid and xenobiotic
receptor (SXR),3 and suppression of cancer cell proliferation.4 Fur-
thermore, MK-4 as well as PK was shown to protect oligodendro-
cyte precursors and immature fetal cortical neurons from
oxidative injury, independent of the vitamin K-dependent c-car-
boxylation reaction.5 There is consistent evidence the MK-4 is con-
verted from other dietary vitamin K homologues.6 We recently
confirmed that MK-4 was converted from dietary phylloquinone
(PK), and then accumulated in various tissues at high concentra-
tions.7 In certain tissues, such as brain tissue, containing high con-
centrations of lipids, MK-4 would be a preferable form of vitamin
K. Although this system should play an important role in biological
functions, the pathway of MK-4 synthesis remains unclear. As a
first step toward clarifying the biological importance of MK-4, we
investigated the mechanism by which dietary PK is converted to
MK-4 using chemical techniques.
All rights reserved.

: +81 78 441 7565.
kano).
A mechanism for the conversion of dietary PK to MK-4 is pro-
posed in Figure 2. After a quinone moiety of dietary PK is reduced
to hydroquinone with a reductase such as NAD(P)H dehydrogenase,
quinone (NQO) 1, NQO2, or glutathione reductase, the side chain
moiety is cleaved by a specific enzyme. The resulting intermediate,
vitamin K3 (menadione) hydroquinone, is subsequently converted
to MK-4 hydroquinone by a bond-forming reaction with geranylger-
anylpyrophosphate (GGPP) derived from the mevalonate pathway.
Finally, MK-4 hydroquinone is changed to MK-4 with oxidation un-
der atmospheric conditions. Although this mechanism seems plausi-
ble, it has not been clarified whether the conversion of PK to MK-4
proceeds directly, or through an ‘‘intermediate” menadione. On this
background, we first elucidated the conversion reaction using deu-
terated menadione (K3-d8) and geranylgeranylpyrophosphate
(GGPP-d5) with LC–APCI–MS/MS.8 We used deuterated compounds
so as to distinguish them from the native MK-4, menadione, and
GGPP originally contained in the cells and to observe the synthetic
reaction itself.
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Figure 2. Proposed mechanism of conversion of PK to MK-4.
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Scheme 1. Synthesis of geranylgeraniol-d5. Reagents and conditions: (a) KHMDS, N-phenyl-bis(trifluoromethane-sulfonimide), THF, 58%; (b) CD3Li, CuI, ether, 94%; (c) LiAlD4,
ether, quant.; (d) pyridine, PBr3, ether; (e) NaH, ethyl acetoacetate, ether, 60% in two steps; (f) 10% KOH aq, 10% HCl, 89%; (g) NaH, triethylphosphonoacetate, THF, 93%; (h)
DIBAL-H, hexane, 87%; (i) LiCl, collidine, CH3SO2Cl, DMF; (j) HOPP(NBu4)3, CH3CN, 33%; (k) ion-exchanger, lyophilization, 20%.
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The aim of our study is to confirm the synthesis of MK-4 in cells
using deuterated menadione and GGPP. The method of producing
GGPP-d5 is shown in Scheme 1. A b-ketoester (3)9 as a starting
material was converted to a triflate (4) with potassium bis(tri-
methylsilyl)amide (KHMDS) and N-phenyl-bis(trifluoromethane-
sulfonimide) at �78 �C.10 To introduce a deuterium, 4 was treated
with CD3Li and CuI at 0 �C to obtain deuterated 5 in 94% yield. The
introduction of an additional deuterium into 5 by reduction with
LiAlD4 gave farnesol-d5 (6) in quantitative yield. The formation of
a C–C bond for elongation of the alkyl chain was achieved using
PBr3 and ethyl acetoacetate to obtain an ethyl ester (7) in 60% yield
in two steps. Compound 7 was converted to a ketone (8) with 10%
NaOH aq and 10% HCl in good yield. A conventional Horner–Em-
mons reaction using NaH and triethylphosphonoacetate gave an
unsaturated alkyl compound (9, E:Z = 10:1) in 93% yield. Reduction
of the E-form with DIBAL-H led to geranylgeraniol-d5 (10) in 87%
yield. The introduction of a methanesulfonyl group into the hydro-
xyl group of 10 with methanesulfonyl chloride and collidine in
CH2Cl2, followed by phosphorylation with HOPP(NBu4)3, gave a
tetrabutylammonium pyrophosphate derivative (11) in 33% yield
in two steps.11 Finally, the tetrabutylammonium salt of 11 was
converted to an ammonium salt using ion-exchange resin and
the lyophilization of the resulting solution gave GGPP-d5 ammo-
nium salt (1) in 20% yield.12

Meanwhile, MK-4-d12 (2) was synthesized from a deuterated
vitamin K3 analogue (K3-d8) available commercially, and geranylg-
eraniol-d5 was synthesized as shown in Scheme 2. K3-d8 was vigor-
ously stirred with a 10% sodium hydrosulfite aq solution and Et2O
to form K3-d8 hydroquinone, to which geranylgeraniol-d5 was then
coupled in the presence of a catalytic amount of BF3 � Et2O. Finally,



Figure 3. Result of the conversion of K3-d8 and GGPP-d5 into MK-4-d12. Columns,
means obtained from three independent experiments; bars, SD. Significant differ-
ence: ***P < 0.001, compared with cells untreated with ligands.
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Scheme 2. Synthesis of the deuterated vitamin K analogue (MK-4-d12). Reagents and conditions: (a) 10% NaS2O4 aq ether, quant.; (b) 1, BF3 � OEt2, dioxane/AcOEt, 55%.
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K3-d8 hydroquinone was oxidized to K3-d8 under atmospheric con-
ditions.13 Thus the desired MK-4-d12 (2)14 was obtained in 55%
yield.

To evaluate the synthesis of MK-4 from these synthetic ligands,
we used a human osteoblastic cell line, MG-63. Briefly, MG-63 cells
were seeded in 6-well plates at 2 � 105 cells/well and incubated for
2 days with DMEM. After confirmation of confluency, an ethanol
solution of each ligand was added to the cells. The cells were incu-
bated for 24 h, then collected from the 6-well plates. Vitamin K
analogues were extracted from the cells and the concentrations
of MK-4-d12 and its epoxide analogue were measured with LC–
APCI–MS/MS to obtain the rate of conversion to MK-4 in MG-63
cells.

Figure 3 shows a concentration of MK-4-d12 converted from
synthesized ligands in cells. In case of addition of ethanol, K3-
d8, and GGPP-d5 alone, MK-4-d12 was not detected at all. When
1 lM or 10 lM of K3-d8 and GGPP-d5 were added at the same
time, MK-4-d12 was produced with the dose-dependent manner.
This result indicates that MK-4 could be converted through men-
adione, followed by a prenylation with GGPP.

Next we evaluated whether MK-4 would be indeed synthe-
sized through a pathway involving hydroquinone derivatives
when converted from other vitamin K homologues. The com-
monly accepted notion about the conversion of MK-4 in living
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Figure 4. Chemically synthesized compounds used to form
body is that the side chain moiety is exchanged after dietary
vitamin K is reduced to hydroquinone derivatives. However,
the ‘‘intermediate” hydroquinone derivatives have not been
detected so far. To prove that hydroquinone is an intermedi-
ate in the conversion, we tried to detect hydroquinone deriv-
atives using chemically synthesized compounds as shown in
Figure 4. Regarding these compounds, one or both phenol
groups of the naphthoquinone moiety was protected to main-
tain the hydroquinone form. For example, we used 1-acet-
oxy15 or 1-methoxy 2-methyl-1,4-naphthalenediol15 and 1,4-
dimethoxy-2-methyl-1,4-naphthalenediol as substrates for the
conversion.

We added these compounds to cells in the same manner as
GGPP-d5, and investigated the conversion to MK-4 using a
HPLC-fluorescent method,16 however, the desired intermediates
17–19 were not obtained at all. Both the mono acetate 14 and
mono methyl ether 15 were converted to MK-4 in cells because
the amount of MK-4 was remarkably increased in comparison to
the control. Presumably, the acetyl group of 14 was hydrolyzed
to produce menadione. Meanwhile, 15 was oxygen-sensitive,
therefore, methyl groups would be easily removed and oxidized
to produce menadione in culture medium. The dimethyl ether 16
was not converted to MK-4. This result indicates that a C-4
‘‘free” phenol group was important for the interaction with ger-
anylgeranylpyrophosphate and conversion to MK-4. There is
much evidence that hydroquinone is involved in the transfer of
electrons.

In this study, we studied the mechanism by which MK-4 is con-
verted in osteoblastic cells using deuterated compounds and vita-
min K derivatives. The results indicated that MK-4 was synthesized
from vitamin K3 generated from dietary vitamin K homologues and
GGPP biosynthesized in the mevalonate pathway. Furthermore, the
hydroxyl group of the vitamin K3 hydroquinone was important for
the conversion to MK-4. These findings should be useful in helping
to clarify the biosynthetic mechanism in vivo and the essential bio-
logical role of MK-4.
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